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Abstract

Flexible motion of a uniform Euler–Bernoulli beam attached to a rotating rigid hub is investigated. Fully
coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the
beam, are derived by using the extended Hamilton’s principle. The centrifugal stiffening effect is included in
the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of
elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial
motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with
large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating
beam are simulated with the model by combining positive position feedback and momentum exchange
feedback control laws. It is indicated that an improved performance for vibration control can be achieved
with the method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the problem of modelling and controling a rotating flexible beam has been given
widespread attention due to practical applications such as flexible robot arms, helicopter rotor
blades, turbine machine rotor blades, and spacecrafts with flexible appendages.
A rotating beam differs from a non-rotating beam in having coupling of elastic deformations

and rigid-body motions. The importance of the coupling was observed by Yigit et al. [1] for Euler–
Bernoulli beams, and Naganathan and Soni [2] for Timoshenko beams. Dynamic modellings of
rotating beam system, neglected the influence of the centrifugal force on transverse deformations,
were studied by Hunagud and Sarkar [3], Baruh and Tadikonda [4] and Choura et al. [5] for
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Euler–Bernoulli beams, and Kane et al. [6] and Simo and Vu-Quoc [7,8] for Timoshenko beams.
Considering the centrifugal stiffening effect, Yigit et al. [1] and Bloch [9] derived the coupling
equations of motion of flexible beam and rigid body. Rotating beams with tip mass were studied
by Zhu and Mote [10] for Euler–Bernoulli beams, and by Yuan and Hu [11] for Timoshenko
beams with the effect of centrifugal stiffening. Except that in Ref. [5], though not including the
stiffening effect, all the models above neglect the axial motion of the beam.
Dynamic behaviors of rotating beam have been investigated by various researchers. Putter and

Manor [12] used the finite element method (FEM) to study the natural frequencies of a rotating
beam. Hoa [13] and Khulief [14] did a similar work, but including a tip mass for a uniform beam
and a taper beam. Wright et al. [15] investigated the vibration modes and natural frequencies
using the Frobenius method. Du et al. [16] did a similar study for a Timoshenko beam. In Ref. [1],
the extended Galerkin method was used to study the effects of the coupling terms upon the
vibration waveforms.
Because of the coupling of flexible deformations and rigid motions, the problem of transverse

vibrations control of rotating beams is more complicated than that of non-rotating beams.
Usually, Euler–Bernoulli beam theory is applied in their controller design and the assumed modes
method is used to obtain the discretized finite-dimensional dynamic model of vibration control
[10,11]. Some techniques, such as the optimal control [10,11], shear force feedback control [17],
and sliding modes control [18], have been used to the suppression of vibrations. But if employing
the coupling of transverse flexible deformations and rigid motions, a concept of controlling the
attitude of the rigid hub can be introduced to suppress the transverse vibration of the beam. The
so-called momentum exchange feedback (MEF) control is such a technique [19]. By combining
this technique with other control methods, such as the positive position feedback (PPF) [20], the
suppression of vibration can be gained dramatically.
In this paper, fully coupled non-linear integro-differential equations, describing axial,

transverse and rotational motions of a rotating uniform Euler–Bernoulli beam, are derived by
using the extended Hamilton’s principle. The centrifugal stiffening effect is included in the
derivation. A finite-dimensional model, including couplings of axial and transverse vibrations,
and of flexible deformations and rigid motions, is obtained by the FEM. A simplified FEMmodel,
suitable for studying transverse vibration and control of a beam with large angle and high-speed
rotation, is presented by neglecting the axial motion. And with the model, suppressions of the
transverse vibrations of a rotating beam, by applying the PPF to the beam and the MEF to the
rigid hub, are simulated. Numerical results indicate excellent performance of suppression can be
achieved with such method.

2. Non-linear dynamic modelling

As depicted schematically in Fig. 1, a uniform Euler–Bernoulli beam of length L; area moment
inertia I ; cross-sectional area A; density r and Young’s modulus E; is attached to a rigid hub of
radius R and mass moment of inertia Ih; which in turn is connected to an actuator that supplies
torque tðtÞ and rotates about the axis perpendicular to the plane X 0–Y 0: Flexible deformations of
the beam are described in a reference co-ordinate OXY ; which rotates relative to the inertia
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co-ordinate O0X 0Y 0 by aðtÞ: The X -axis is tangential to the neutral axis of the beam at the point of
attachment of the beam to the rigid.
The motion of the beam is restricted to the horizontal X–Y plane, and the gravitational force is

of no consideration. The axial and transverse displacements of the beam are denoted by u and v;
respectively. Large overall rotation aðtÞ and high angular speed ’aðtÞ are permitted; so couplings
between the rigid-body and elastic motions occur in the following model.
A material point P; on the neutral axis X of the beam in natural condition, moves to point P0

under deformations. The position vector at the point P0 on the deformed neutral axis can be
expressed as

r
,
ðx; tÞ ¼ ðR þ x þ uÞ~ii þ vðx; tÞ~jj ; ð1Þ

where~ii and~jj are the unit vectors along OX and OY in the inertia co-ordinate, respectively. Then
the inertia velocity of P0 on the beam is

’~rr ¼ ð ’u � v’aÞ~ii þ ½ðR þ x þ uÞ’aþ ’v�~jj ; ð2Þ

where ð	Þ denotes the time derivative. So the kinetic energy of the system can be written as

T ¼ 1
2
rA

Z L

0

’~rr 
 ’~rr dx þ 1
2

Ih ’a2: ð3Þ

The potential energy of the system consists of two parts, the elastic potential energy and the
potential energy arising from the centrifugal force. By the assumption that the beam is linearly
elastic and deformation is small the potential energy is

V ¼ 1
2

EA

Z L

0

u02 dx þ 1
2

EI

Z L

0

v002 dx þ 1
2
rA

Z L

0

Fv02 dx; ð4Þ

where ð Þ0 denotes partial differentiation with respect to x; and F is the force due to rotation-
induced axial centrifugal force. The force F can be expressed as

F ¼ rA

Z L

x

’a2½R þ z� dz ¼ rA’a2 RðL � xÞ þ 1
2
ðL2 � x2Þ

� �
: ð5Þ
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Then, the Lagrangian function of the system can be written as

C ¼T � V ¼
Z L

0

Fðu; u0; v; v0; v00; ’v; v; ’aÞ dx

¼
Z L

0

1
2
rAfð ’u � v’aÞ2 þ ½ðR þ x þ uÞ’aþ ’v�2g � 1

2
EAu02 � 1

2
EIv002

�

� 1
2
rA’a2½RðL � xÞ þ 1

2
ðL2 � x2Þ�v02

�
dx þ 1

2
Ih ’a2; ð6Þ

where Fðu; u0; v; v0; v00; ’v; ’aÞ is the Lagrangian density function. And the virtual work done dW by
external torque tðtÞ at the hub is given by

dW ¼ tðtÞda: ð7Þ

Substituting Eqs. (3), (4) and (7) into the extended Hamilton’s principle,
R t2

t1
ðdT � dV þ dW Þ dt ¼

0; taking the variations with respect to the elastic deformations u and v; and (the rotation angle) a;
yields governing equations of motion and the corresponding boundary conditions. They are

rA½ .u � 2’a’v � .av � ’a2ðR þ x þ uÞ� � EAu00 ¼ 0; ð8Þ

rA½.v þ 2’a ’u � ’a2v þ .aðR þ x þ uÞ� þ EIv00 00

� rA’a2f½RðL � xÞ þ 1
2
ðL2 � x2Þ�v00 � ðR þ xÞv0g ¼ 0; ð9Þ

Ih .aþ rA

Z L

0

fv2 þ ðR þ x þ uÞ2 � ½RðL � xÞ þ 1
2
ðL2 � x2Þ�v02g dx

� �
.a

þ rA

Z L

0

f2v’v þ 2ðR þ x þ uÞ ’u � 2½RðL � xÞ þ 1
2
ðL2 � x2Þ�v0 ’v0g dx

� �
’a

þ rA

Z L

0

½ðR þ x þ uÞ.v � .uv� dx ¼ tðtÞ; ð10Þ

with the corresponding boundary conditions

uð0Þ ¼ 0; vð0Þ ¼ 0; v0ð0Þ ¼ 0; ð11Þ

and

u0ðLÞ ¼ 0; v00ðLÞ ¼ 0; v000ðLÞ ¼ 0: ð12Þ

Eqs. (8)–(10) include non-linear couplings of the axial elastic deformation u; the transverse elastic
deformation v; and the hub rotation angle a: If vanishing some terms of Eqs. (9) and (10), the non-
linear model (8)–(10) can be simplified to the model described by Eqs. (24)–(26) in Ref. [5]. The
reason of resulting in such differences is that the potential energy, arising from the rotation-
induced axial centrifugal force, was not included in the total system energy in Ref. [5].
Neglecting the axial displacement u; that is setting u ¼ 0 in Eqs. (9) and (10), yields the

following equations:

rA½.v � ’a2v þ .aðR þ xÞ� þ EIv00 00 � rA’a2f½RðL � xÞ

þ 1
2
ðL2 � x2Þ�v00 � ðR þ xÞv0g ¼ 0; ð13Þ
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Ih .aþ rA

Z L

0

fv2 þ ðR þ xÞ2 � ½RðL � xÞ þ 1
2
ðL2 � x2Þ�v02g dx

� �
.a

þ rA

Z L

0

f2v’v � 2½RðL � xÞ þ 1
2
ðL2 � x2Þ�v0 ’v0g dx

� �
’a

þ rA

Z L

0

½ðR þ xÞ.v� dx ¼ tðtÞ: ð14Þ

The boundary conditions are the same as those in Eqs. (11) and (12). The governing differential
equations above are used frequently in control applications, and they also can be got from
Refs. [1,9] directly, and from Refs. [11,12] by some steps of simplification.

3. Finite-dimensional non-linear modelling

In this part, the finite-dimensional non-linear modelling is obtained following the idea of
Stylianou and Tabarrok [21] used for developing the finite-dimensional modelling of an axially
moving beam.

3.1. Finite element discretization

In order to develop the finite element equations for the beam element, the beam is divided into n

elements of equal length l: As shown in Fig. 2, the location of a point A along the neutral axis of
the ith element in the element co-ordinate oxy; with respect to the reference co-ordinate OXY ; can
be expressed as

x ¼ Li þ %x; ð15Þ

where

Li ¼ ði � 1Þ
L

n
: ð16Þ
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Then the Lagrangian function for the ith element is given by

Ci ¼
Z l

0

1
2
rAfð ’u � v’aÞ2 þ ½ðR þ Li þ %x þ uÞ’aþ ’v�2g � 1

2
EAu02 � 1

2
EIv002

�

� 1
2
rA’a2½RðL � Li � %xÞ þ 1

2
ðL þ Li þ %xÞðL � Li � %xÞ�%v02

�
d %x: ð17Þ

For simplicity, the overbars in the above equations are dropped in the following analyses.
From the theory of the FEM [22], we have

u ¼ ½N�ufug; v ¼ ½N�vfvg; ð18Þ

where ½N�u and fug are the shape function and nodal variables vector of axial displacement,
respectively; and ½N�v and fvg are those of the transverse displacement. ½N�u and ½N�v can be
expressed as

½N�u ¼ 1�
x

l

x

l

h i
;

½N�v ¼ 1�
3x2

l2
þ
2x3

l3
x �

2x2

l
þ

x3

l2
3x2

l2
�
2x3

l3
�

x2

l
þ

x2

l2

� �
: ð19Þ

Vectors fug and fvg are

fugT ¼ ½ u1 u2 �; fvgT ¼ v1 y1 v2 y2
� �

; ð20Þ

where u1 is the axial nodal displacement , and v1 and y1 are the transverse nodal displacement and
slope variables of the left-hand end of the element, respectively, and u2; v2 and y2 are those of the
right-hand end of the element. From Eq. (18), then have

u0 ¼ ½N�0ufug; ’u ¼ ½N�uf ’ug; ð21Þ

v0 ¼ ½N�0vfvg; v00 ¼ ½N�00vfvg; ’v ¼ ½N�vf’vg: ð22Þ

Substituting Eqs. (18), (21) and (22) into Eq. (17), we obtain

Ci ¼ 1
2
f ’ugT½m�uf ’ug �

1
2
fugT½k�ufug þ 1

2
’a2fugT½k�u1fug þ ’a2½k�u2fug

� ’af ’ugT½c�uvfvg þ 1
2
f’vgT½m�vf’vg �

1
2
fvgT½k�vfvg þ 1

2
’a2fvgT½k�v1fvg

� 1
2
’a2fvgT½k�v2fvg þ ’af’vgT½c�vufug þ ’a½c�vf’vg þ

1
2
Ib ’a2; ð23Þ

where

½m�u ¼
Z l

0

rA½N�Tu ½N�u dx; ½m�v ¼
Z l

0

rA½N�Tv ½N�v dx; ð24; 25Þ

½k�u ¼
Z l

0

EA½N�0Tu ½N�0u dx; ½k�v ¼
Z l

0

EI ½N�00Tv ½N�00v dx; ð26; 27Þ

½k�u1 ¼
Z l

0

rA½N�Tu ½N�u dx; ½k�v1 ¼
Z l

0

rA½N�Tv ½N�v dx; ð28; 29Þ

½k�u2 ¼
Z l

0

rAðR þ Li þ xÞ½N�u dx; ð30Þ
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½k�v2 ¼
Z l

0

rA½RðL � Li � xÞ þ 1
2
ðL þ Li þ xÞðL � Li � xÞ�½N�0Tv ½N�0v dx; ð31Þ

½c�uv ¼
Z l

0

rA½N�Tu ½N�v dx; ½c�vu ¼
Z l

0

rA½N�Tv ½N�u dx; ð32; 33Þ

½c�v ¼
Z l

0

rAðR þ Li þ xÞ½N�v dx; Ib ¼ rA

Z l

0

ðR þ Li þ xÞ2 dx: ð34; 35Þ

The matrices ½m�u and ½m�v correspond to the well-known consistent mass matrices of the beam
element of axial and transverse vibrations, respectively, whereas ½k�u and ½k�v are the stiffness
matrices. Their components can be found in books on finite element, e.g., Ref. [22]. The other
matrices can be determined by using a symbolic-computation program.

3.2. The Lagrange equation implement

The Lagrange equations for an element are given by

@Ci

@fugT
�

d

dt

@Ci

@f ’ugT

� �
¼ f0g; ð36Þ

@Ci

@fvgT
�

d

dt

@Ci

@f’vgT

� �
¼ f0g; ð37Þ

@Ci

@a
�

d

dt

@Ci

@’a

� �
¼ tðtÞ: ð38Þ

Evaluating required quantities in the Eqs. (36)–(38), and substituting the results into the Lagrange
function (23), we obtain the element governing equations as

½m�uf .ug � 2’a½c�uvf’vg þ ð½k�u � ’a2½k�u1Þfug � .a½c�uvfvg ¼ ’a2½k�Tu2; ð39Þ

½m�vf.vg þ 2’a½c�vuf ’ug þ ð½k�v � ’a2½k�v1 þ ’a2½k�v2Þfvg þ .a½c�vufug ¼ �.a½c�Tv ; ð40Þ

ma .aþ ka ’a� f .ugT½c�uvfvg � f ’ugT½c�uvf’vg

þ f.vgT½c�vufug þ f’vgT½c�vuf ’ug þ ½c�vf.vg ¼ t; ð41Þ

where

ma ¼ Ib þ fugT½k�u1fug þ 2½k�u2fug þ fvgTð½k�v1 � ½k�v2Þfvg; ð42Þ

ka ¼ 2f ’ugT½k�u1fug þ 2½k�u2f ’ug þ 2f’vgTð½k�v1 � ½k�v2Þfvg: ð43Þ

In the derivation, we have used the identity ½c�uv ¼ ½c�Tvu: Assembly of the element equations
(39)–(43) to develop global equations and the global equations can be expressed as

½M�uf .ug � 2’a½C�uvf’vg þ ð½K �u � ’a2½K�u1Þfug � .a½C�uvfvg ¼ f’a2½K �Tu2g; ð44Þ

½M�vf.vg þ 2’a½C�vuf ’ug þ ð½K�v � ’a2½K �v1 þ ’a2½K �v2Þfvg þ .a½C�vufug ¼ f�.a½C�Tv g; ð45Þ
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Ma .aþ Ka ’a� f .ugT½C�uvfvg � f ’ugT½C�uvf’vg

þ f.vgT½C�vufug þ f’vgT½C�vuf ’ug þ ½C�vf.vg ¼ t: ð46Þ

The equations above are a set of non-linear, coupled secondorder differential equations. If the
axial deformation is neglected, the above equations can be written as

½M�vf.vg þ ½K �vfvg þ ’a2ð�½K�v1 þ ½K �v2Þfvg ¼ f�.a½C�Tv g; ð47Þ

½Ih þ Ib þ fvgTð½K �v1 � ½K �v2Þfvg�.a

þ 2½f’vgTð½K �v1 � ½K �v2Þfvg�’aþ ½C�vf.vg ¼ t: ð48Þ

It should be indicated that in Eq. (48), moment inertia of the rigid hub Ih has been included in the
global mass matrix. Eqs. (47) and (48) can be used to study the dynamic behaviors and vibration
control of rotating Euler–Bernoulli beams. The following simulations of suppressing transverse
vibrations of a rotating beam are based on these two equations.

4. Active vibration control

The use of piezoelectric sensors and/or actuators, embedded in materials or surface bonded on
structures, has attracted considerable interest for the vibration control of flexible structures. In
order to avoid the notorious problem of ‘‘spillover’’, PPF control law is popularly used for
suppressing the vibrations. But such method has the localization of having a small control gain,
which must be below 1 [20]. This small gain weakens the performance of vibration suppression of
flexible structures.
Employing the coupling of transverse flexible deformations and rigid motions, a concept of

controlling the attitude of the rigid body, can be introduced to suppress the transverse vibrations
of rotating beam. The so-called MEF control is one of the techniques [19]. By combining PPF and
MEF, the performance of PPF control can be improved in suppressing transverse vibrations of
rotating beam, and dramatic results can be gained.
In the following simulating work for suppressing vibrations of a rotating beam, only one pair of

piezoelectric sensor/actuator is used and surface bonded at the root of the beam. PPF control law
is applied to the root of the beam by piezoelectric actuator, and MEF control is applied to the
rigid hub by DC servomotor. Root shear force and bending moment of the flexible beam are
measured by piezoelectric sensor.

4.1. Modelling of vibration control

In Section 3, the finite-dimensional equations, expressing coupling of transverse vibrations of
flexible beam and rigid-body motions, have been given by Eqs. (47) and (48) by neglecting the
axial motion in Eqs. (44)–(46). But if not considering effects of rigid-body motions on the
deformations of the beam, Eq. (47) may be used to describe the transverse vibrations of the beam.
Velocity and acceleration of angular displacement in Eq. (47), ’a and .a; are determined by the
driving torque used to rotate the hub. Such torque can be supplied arbitrarily what we want. For
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example, if the value of the torque is invariable with time, then ’a is constant and the hub rotates
with a constant speed.
Firstly, we do not consider the effects of rigid-body motions on transverse vibrations of flexible

beam, and investigate only using PPF control law to suppress the vibrations of the beam. The
general methodology of PPF control is described in Ref. [20]. If the equations describing the
structures and actuators are expressed as in the vector case, we have the following model of PPF
control:

System : ½M�vf.vg þ ½K �vfvg þ ’a2ð�½K �v1 � ½K �v2Þfvg

þ f.a½C�Tv g ¼ ½S�T½G�fZg; ð49Þ

Actuator : f.Zg þ 2xfof f’Zg þ o2
f fZg ¼ o2

f ½S�fvg; ð50Þ

where fZg is the filter state vector, ½S� the participation matrix, and ½G� the gain matrix to be
designed. And xf and of are the filter damping ratio and filter frequency, respectively.
MEF control law takes the form [19]

tðtÞ ¼ �g1a� g2 ’a� g3½ðS0R � M0Þ � Ib .a�; ð51Þ

where g1; g2 and g3 are the control gains, and S0 and M0 are the root shear force and bending
moment of flexible beam, respectively. If employing the coupling of transverse deformations and
rigid-body motions of rotating beam system and further adding MEF control on the hub to
indirectly suppress transverse vibrations of the beam, Eq. (48) must be included. Substituting
Eq. (51) into Eq. (48), the equation can be rewritten as

½Ih þ Ib þ fvgTð½K �v1 � ½K�v2Þfvg�.aþ 2½f’vgTð½K �v1 � ½K �v2Þfvg�’aþ ½C�vf.vg

¼ �g1a� g2 ’a� g3½ðS0R � M0Þ � Ib .a�: ð52Þ

Then, another control modelling, combined PPF and MEF to suppress transverse vibrations of
flexible rotating beam, is formed by Eqs. (49), (50) and (52). In such a model, the meaning of
torque t is not the same as that of the model using only PPF control, and law of t cannot be
chosen arbitrarily then. However, as initial drive for rotating the hub, we can still choose the law
of the torque as what we expect and that is the reason why rotation speeds of the hub are taken as
constant in the following simulations.
Actually, in the process of using PPF and MEF to suppress the transverse vibrations of rotating

beam, torque t must be obtained indirectly from the signals of sensor located at the root of the
beam every moment. Such signals include the information of root shear force and bending
moment to be used by Eq. (51) to calculate the value of t: And at the same time, Eq. (52) is
applied to determine the angular displacement, speed and acceleration of the hub; all of them will
appear in Eq. (49). After that, Eqs. (49) and (50) can be used to implement PPF control for the
beam. What should be mentioned here is that there is some extent of time delay in each step of the
above processes, because processors need some time to process the signals and apply appropriate
signals to the actuator. Of course, the control effect will be better if the time delay is reduced to the
least extent.

ARTICLE IN PRESS

J.B. Yang et al. / Journal of Sound and Vibration 274 (2004) 863–875 871



4.2. Simulation results

To show the benefit of the control scheme of combining the techniques of PPF and MEF, two
cases are compared; case 1, only using PPF control (Eqs. (49) and (50)), and case 2, adding control
of rigid-body maneuver to case 1 (Eqs. (49), (50) and (52)). The simulations are based on a
hub–beam system with physical parameters shown in Table 1. Simulations results for four cases,
with different hub rotation speeds ’a ¼ 0:3; 1, 3.0 and 4:5 rad=s; are shown in Figs. 3–6,
respectively.
The filter parameters xf and of for PPF control are 0.02 and 4.30, respectively, chosen

according to the damping ratio and frequency of the first vibrational mode of the non-rotating
cantilever beam. The control gain matrix reduces to a constant because only one sensor is located
at the root of the beam. Such constant is then selected as 1, the maximum gain value of PPF
control. The control gains of MEF for every case are given under each figure.
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Table 1

Physical parameters of a hub–beam system to simulation

Beam

Density: r ¼ 2700 kg=m3

Young’s modulus: E ¼ 71
 109 N=m2

Width: b ¼ 10�3 m

Height: h ¼ 0:10 m
Length: L ¼ 1:10 m
Cross-sectional area: A ¼ 10�4 m2

Moment of area: I ¼ 8:33
 10�12 m4

Hub

Mass moment of inertia: Ih ¼ 3:84 kg=m2

Radius: R ¼ 0:1 m
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Fig. 3. Tip deflection for ’a ¼ 0:3 rad=s: - - - -, case 1, PPF; ——, case 2, PPF and MEF. PPF: xf ¼ 0:02; of ¼ 4:30;
gain ¼ 1:0; MEF: g1 ¼ 90; g2 ¼ 30; g3 ¼ 30:
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It is obvious, even though the control gains of PPF are selected as the maximum value 1,
performances of suppression are not excellent. And the performances will lower with increasing
rotation speeds of the hub. Such a phenomenon arises from the centrifugal stiffening effect. When
the hub speed is increased, the effect is also extended, which in turn results in hardening the beam.
The localization of PPF control can be improved by adding MEF on the hub. The numerical

results indicate the improvement of case 2 with the inclusion of MEF control, and that the flexible
vibrations are dramatically suppressed with PPF and MEF control.
We also can see that the control gains of MEF are decreased as rotation speeds of the hub are

increased. The effect of centrifugal stiffening is the right reason for this. The higher the speed the
hub rotates, the larger the beam the stiffness. Root shear force and bending moment of the flexible
beam will increase with hardening of the beam. Then from Eq. (51), the control gains g1; g2 and g3
can be decreased to some extent. In addition, the relatively unsatisfactory performance of
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Fig. 5. Tip deflection for ’a ¼ 3:0 rad=s: - - - -, case 1, PPF; ——, case 2, PPF and MEF. PPF: xf ¼ 0:02; of ¼ 4:30;
gain ¼ 1:0; MEF: g1 ¼ 70; g2 ¼ 25; g3 ¼ 25:
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suppression for the case ’a ¼ 4:5 rad=s; when the angular frequency of the rotating hub is above
the first natural frequency of transverse vibration of the non-rotating cantilever beam, is also
because of the heavily stiffening effect.

5. Conclusions

In this paper, fully coupled non-linear integro-differential equations, describing the axial,
transverse and rotational motions of a rotating uniform Euler–Bernoulli beam, are derived by
using the extended Hamilton’s principle. The centrifugal stiffening effect is taken into account. A
finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic
deformations and rigid motions, is obtained by the FEM. And by neglecting the axial motion, a
simplified FEM model is used to study suppression of transverse vibrations of a rotating beam
with PPF and MEF control simultaneously. It is indicated that excellent performance can be
achieved with this scheme.
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